Correction: Bayesian Parameter Inference by Markov Chain Monte Carlo with Hybrid Fitness Measures: Theory and Test in Apoptosis Signal Transduction Network
نویسندگان
چکیده
When model parameters in systems biology are not available from experiments, they need to be inferred so that the resulting simulation reproduces the experimentally known phenomena. For the purpose, Bayesian statistics with Markov chain Monte Carlo (MCMC) is a useful method. Conventional MCMC needs likelihood to evaluate a posterior distribution of acceptable parameters, while the approximate Bayesian computation (ABC) MCMC evaluates posterior distribution with use of qualitative fitness measure. However, none of these algorithms can deal with mixture of quantitative, i.e., likelihood, and qualitative fitness measures simultaneously. Here, to deal with this mixture, we formulated Bayesian formula for hybrid fitness measures (HFM). Then we implemented it to MCMC (MCMC-HFM). We tested MCMC-HFM first for a kinetic toy model with a positive feedback. Inferring kinetic parameters mainly related to the positive feedback, we found that MCMC-HFM reliably infer them using both qualitative and quantitative fitness measures. Then, we applied the MCMC-HFM to an apoptosis signal transduction network previously proposed. For kinetic parameters related to implicit positive feedbacks, which are important for bistability and irreversibility of the output, the MCMC-HFM reliably inferred these kinetic parameters. In particular, some kinetic parameters that have experimental estimates were inferred without using these data and the results were consistent with experiments. Moreover, for some parameters, the mixed use of quantitative and qualitative fitness measures narrowed down the acceptable range of parameters.
منابع مشابه
Hamiltonian Monte Carlo Acceleration Using Neural Network Surrogate functions
Relatively high computational cost for Bayesian methods often limits their application for big data analysis. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov Chain Monte Carlo (MCMC) methods, namely, Hamiltonian Monte Carlo (HMC). The key idea...
متن کاملNew Approaches in 3D Geomechanical Earth Modeling
In this paper two new approaches for building 3D Geomechanical Earth Model (GEM) were introduced. The first method is a hybrid of geostatistical estimators, Bayesian inference, Markov chain and Monte Carlo, which is called Model Based Geostatistics (MBG). It has utilized to achieve more accurate geomechanical model and condition the model and parameters of variogram. The second approach is the ...
متن کاملSpatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کاملComputational Methods for a Class of Network Models
In the following article, we provide an exposition of exact computational methods to perform parameter inference from partially observed network models. In particular, we consider the duplication attachment model that has a likelihood function that typically cannot be evaluated in any reasonable computational time. We consider a number of importance sampling (IS) and sequential Monte Carlo (SMC...
متن کاملInference about the Burr Type III Distribution under Type-II Hybrid Censored Data
This paper presents the statistical inference on the parameters of the Burr type III distribution, when the data are Type-II hybrid censored. The maximum likelihood estimators are developed for the unknown parameters using the EM algorithm method. We provided the observed Fisher information matrix using the missing information principle which is useful for constructing the asymptotic confidence...
متن کامل